US009323518B1

a2 United States Patent 10) Patent No.: US 9,323,518 B1
Savant et al. (45) Date of Patent: Apr. 26, 2016
(54) SYSTEMS AND METHODS FOR MODIFYING 2011/0247081 Al* 10/2011 Sheltoncccooccerviernins 726/28
APPLICATIONS WITHOUT USER INPUT 2012/0243043 Al 972012 Asai
2012/0246630 Al* 9/2012 Kuzinsetal. 717/169
: . : 2013/0081120 A1* 3/2013 DelLuca et al.covvrvre, 726/7
(71) Applicant: Symantec Corporation, Mountain View, 5013/0254880 Al 9/2013 Alperovitch et al,
CA (US) 2013/0283377 Al 10/2013 Das et al.
2013/0333039 Al 12/2013 Kelly
(72) Inventors: Anubhav Savant, Culver City, CA (US); 2014/0090077 A1* 3/2014 Jeongetal 726/26
Ming Chen, Culver City, CA (US); Hai 2014/0096246 Al 4/2014 Morrissey et al.
Zhao, Los Angeles, CA (US) OTHER PUBLICATIONS
(73) Assignee: Symantec Corporation, Mountain View, “Sending Simple Data to Other Apps”, http://developer.android.com/
CA (US) training/sharing/send html, as accessed Jan. 7, 2014, (Jan. 4, 2012).
. “Google Play”, http://en.wikipedia.org/wiki/Google Play, as
(*) Notice: Subject to any disclaimer, the term of this accessed Jan. 7, 2014, Wikipedia, (Mar. 7, 2012).
patent is extended or adjusted under 35 (Continued)
U.S.C. 154(b) by O days.
(21) Appl. No.: 14/445,704 Primary Examiner — Anil Khatri
Assistant Examiner — Binh Luu
(22) Filed: Jul. 29, 2014 (74) Attorney, Agent, or Firm — ALG Intellectual Property,
(51) Imt.Cl HEC
nt. CL.
GO6F 9/44 (2006.01) (57) ABSTRACT
GO6F 7/40 2006.01 . . i
GO6F 9/445 EZOO 6.01% The disclosed computer-implemented method for modifying
applications without user input may include (1) identifying a
GO6F 21/56 (2013.01) . v :
need to modify at least one application on the computing
(52) US.CL. device, (2) initiating modification of the application on the
CPCcccceee. GO6F 8/65 (2013.01); GOG6F 21/562 ’ . . LR .
201301 computing device, (3) while the application is being modi-
. . . (D) fied, monitoring event notifications generated by an accessi-
(58) Field of Classification Search bility service that provides user interface enhancements for
N ty P
one . disabled individuals on an operating system installed on the
See application file for complete search history. computing device, (4) determining, based on an analysis of an
(56) References Cited event n?tiﬁication ge?nergte(.i by the acceszibilit}l/1 service, that
auser of the computing device 1s prompted, on the computing
U.S. PATENT DOCUMENTS device, to provide input necessary to complete the modifica-
tion of the application, and (5) in response to detecting that
6,167,567 A * 12/2000 Chilesetal. 717/173 the user is prompted to provide the input, automatically sup-
N promp p p y sup
g%g%;?g g é) g; 588 é ieha et al~t R ;};; }g; plying the input in order to complete the modification of the
,581, anwar et al. . P . _
2004/01885 11 Al E3 9/2004 Sprlgg et al' """"""""""" 713/1 appllcatlon' V.anous Other. methOdSS SyStemSS and Computer
2006/0242712 Al 10/2006 Linn et al. readable media are also disclosed.
2008/0028391 Al* 1/2008 Nallipoguetal. 717/174
2011/0047620 Al 2/2011 Mabhaffey et al. 18 Claims, 7 Drawing Sheets

300

| Identify a nesd to modify at least one application on the Gomputing device
302

!

| Initiate modification of the application on the computing device
304

In response ta detecting that the user is pr

rompted to provi
supply the input in order to completa the modification of the application
a1

ids the input, automatioally

US 9,323,518 B1
Page 2

(56) References Cited

OTHER PUBLICATIONS

Anubhav Savant; Systems and Methods for Informing Users About
Applications Available for Download; U.S. Appl. No. 14/178,279,

filed Feb. 12, 2014.

Anubhav Savant; Systems and Methods for Providing Information
Identifying the Trustworthiness of Applications on Application Dis-
tribution Platforms; U.S. Appl. No. 14/338,539, filed Jul. 23, 2014.
“AccessibilityService”, http://developer.android.com/reference/an-
droid/accessibilityservice/Accessibility Servicehtml, as accessed
May 30, 2014, Android, (Nov. 15, 2009).

“Digital distribution”, http://en.wikipedia.org/wiki/Digital distri-
bution, as accessed May 30, 2014, Wikipedia, (Jun. 15, 2005).
“Building Accessibility Services”, http://developer.android.com/
guide/topics/ui/accessibility/services.html, as accessed May 30,
2014, Android, (Apr. 14, 2012).

Zeqing Qi, et al; Systems and Methods for Updating Applications;
U.S. Appl. No. 14/305,497, filed Jun. 16, 2014.

Anubhav Savant; Systems and Methods for Evaluating Content Pro-
vided to Users via User Interfaces; U.S. Appl. No. 14/698,885, filed

Apr. 29, 2015.
“Applicationld versus PackageName”, http://tools.android.com/
tech-docs/new-build-system/applicationid-vs-packagename, as

accessed Mar. 3, 2015, Android Tools Project Site, (Oct. 3, 2014).
Beal, Vangie “API—application program interface”, http://www.
webopedia.com/TERM/A/APLhtml, as accessed Mar. 3, 2015,
Webopedia, (Jun. 21, 2000).

“AccessibilityEvent”, http://developer.android.com/reference/an-
droid/view/accessibility/AccessibilityEvent html, as accessed Mar.
3, 2015, Android Developers, (Oct. 10, 2009).

“Greenify”, https://play.google.com/store/apps/details?id=com.
oasisfeng.greenify&hl=en, as accessed May 30, 2014, (Jun. 19,
2013).

“Receiving Simple Data from Other Apps”, http://developer.android.
com/training/sharing/receive.html, as accessed Jan. 7, 2014, (Jan. 3,
2012).

“Is it possible to detect Android app uninstall?”, http://stackoverflow.
com/questions/6209730/is-it-possible-to-detect-android-app-
uninstall, as accessed Jun. 25, 2015, Stack Overflow, (Jun. 2, 2011).
“Android not receiving Intent Action_Package Removed in the
removed package”, http://stackoverflow.com/questions/3648166/
android-not-receiving-intent-action-package-removed-in-the-re-
moved-package, as accessed Jun. 25, 2015, Stack Overflow, (Sep. 5,
2010).

“AccessibilityService”, http://developer.android.com/reference/an-
droid/accessibilityservice/AccessibilityService html, as accessed
Jun. 25, 2015, Android Developers, (Nov. 15, 2009).

“Developing an Accessibility Service”, http://developer.android.
com/training/accessibility/service html, as accessed Jun. 25, 2015,
Android Developers, (Apr. 13, 2012).

“AlertDialog”, http://developer.android.com/reference/android/app/
AlertDialog html, as accessed Jun. 25, 2015, Android Developers,
(Feb. 18, 2009).

“Artimys”, https://artimysapi.appspot.com/, as accessed Jun. 4,
2015, (2013).

Coyne, Sarah M., et al., “Profanity in Media Associated With Atti-
tudes and Behavior Regarding Profanity Use and Aggression”, http://
pediatrics.aappublications.org/content/early/2011/10/14/peds.
2011-1062 .abstract, as accessed Jun. 4, 2015, Pediatrics, American
Academy of Pediatrics, (Oct. 17,2011).
“android.accessibilityservice”, https://developer.android.com/refer-
ence/android/accessibilityservice/package-summary.html, as
accessed Jun. 4, 2015, Android Developers, (Sep. 22, 2009).
Kraunelis, Joshua et al., “On Malware Leveraging the Android
Accessibility Framework”, http://www.umac.mo/rectors_ office/
docs/weizhao__cv/pub__refereed_journals/2015_ref journals/
On%?20Malware.pdf, as accessed Jun. 4, 2015, ICST Transactions
Preprint, (2013 or earlier).

“Adblock Plus”, https://adblockplus.org/, as accessed Jun. 4, 2015,
(Aug. 21, 2006).

“AccessibilityEvent”, http://developer.android.com/reference/an-
droid/view/accessibility/ AccessibilityEvent.html, as accessed Jun. 4,
2015, Android Developers, (Oct. 10, 2009).

* cited by examiner

U.S. Patent

Apr. 26,2016 Sheet 1 of 7

System
100

Modules
102

Identification Module
104

Initiating Module
106

Monitoring Module
108

Determination Module
110

Supplying Module
112

Prompting Module
114

FIG. 1

US 9,323,518 B1

U.S. Patent

200

\

Apr. 26,2016

Sheet 2 of 7

Server
206

Network
204

Computing Device

202

Identification Maodule
104

A

Application
208

v

Initiating Module
106

Accessibility Service
210

v

Monitoring Module
108

v

Event Notifications
212

v

Determination Module
110

|.7
|.7

User Prompt

v

Supplying Module
112

214

FIG. 2

US 9,323,518 B1

U.S. Patent Apr. 26,2016 Sheet 3 of 7 US 9,323,518 B1

300

\

Identify a need to modify at least one application on the computing device
302

Initiate madification of the application on the computing device
304

Y
While the application is being modified, monitor event notifications generated by an
accessibility service that provides user interface enhancements for disabled individuals
on an operating system installed on the computing device
306

A 4
Determine, based on an analysis of an event notification generated by the accessibility
service, that a user of the computing device is prompted, on the computing device, to
provide input necessary to complete the modification of the application
308

A 4

In response to detecting that the user is prompted to provide the input, automatically
supply the input in order to complete the modification of the application
310

A 4

D

FIG. 3

US 9,323,518 B1

Sheet 4 of 7

Apr. 26,2016

U.S. Patent

vie
dwold Jasn

v "OId

ﬁw * * * * :Buney sbelrsny

SNOILNTOS ALIIND3S H8yslignd
> — [lejsu] _

HIA0YLSIA FHVMIVIN -uoieolddy <

0%
wuoye|d uonnguisiq uoneoliddy

00%
MOPUIAA SAOY

20¢
a21neq Bunndwon

80¢
uoneolddy

U.S. Patent Apr. 26,2016 Sheet 5 of 7 US 9,323,518 B1

Computing Device
202

Active Window
500

Application 208 is being installed.
Screen Overlay

502 < Installation Progress
0% 75% 100%

FIG. 5

US 9,323,518 B1

Sheet 6 of 7

Apr. 26,2016

U.S. Patent

9 ‘OId

Aows|y WesAg

€€ 2€9
ao1ne(abeio)s a21na(] abeioig
dnyoeg Arewd
829 74
A A 321na(q a01A8(Q
ndu| Aeldsig
A H
€9 0¢9 929 zl9
aoBUBIU| |0epaU| Jaydepy alnjonJjsesyu|
abelo)g ndu| Aeldsig uoljESIUNWIWOYD
A A H \
A 4 \ 4
< A A A A A >
y y y A 4 y
201
mowmﬂc_ 029 819 sa|Npo 715
uoREsIUNWWON) Jg|loluod O/l Jojjonuo) Aowsp — 10SS80014
919

X

019

weisAg Bunndwo)

US 9,323,518 B1

Sheet 7 of 7

Apr. 26,2016

U.S. Patent

"Ol4

67
fely sbelo)g
usbifjelu

087
olged NVS

TNJOZZ &
aomeq |
[
.
[
F0ZZ <
TNJ06Z someq |
aonaq
e
°
°
(17062
ELINETg|

SvZ
JEYNETIS

ovZ
SEYNEIS

(N)09Z

201n9Q

A

A

1097z

a01A8Q

A

0¢1
juslo

272
walo

001
walsAs

01z
Lo

AN

004
2IN129)IY2IY HJOMBN

US 9,323,518 Bl

1
SYSTEMS AND METHODS FOR MODIFYING
APPLICATIONS WITHOUT USER INPUT

BACKGROUND

In order to increase the safety and performance of a com-
puting device, a security policy and/or administrator may
recommend modifying an application on the computing
device. For example, an anti-malware engine may determine
that an application installed on a computing device represents
a security threat and should therefore be removed from the
computing device. In addition, an administrator may deter-
mine that one or more applications that are beneficial to the
functionality and/or security of a computing device should be
updated or installed on the computing device.

Unfortunately, traditional systems for modifying applica-
tions may prompt or even require users to enter input (e.g.,
click a button, enter authentication credentials, etc.) in order
to complete the desired modification. As a result, users may
intentionally or inadvertently disregard important security
recommendations, potentially exposing their computing
devices to malicious software. As such, the current disclosure
identifies and addresses a need for more efficient and effective
systems and methods for modifying applications on comput-
ing devices.

SUMMARY

As will be described in greater detail below, the instant
disclosure describes various systems and methods for modi-
fying applications without user input by determining that a
user is required to enter input in order to complete the modi-
fication of an application based on analyzing event notifica-
tions generated by an accessibility service. The disclosed
systems and methods may then supply the input without
requiring user interaction.

In one example, a computer-implemented method for per-
forming such a task may include (1) identitying a need to
modify at least one application on the computing device, (2)
initiating modification of the application on the computing
device, (3) while the application is being modified, monitor-
ing event notifications generated by an accessibility service
that provides user interface enhancements for disabled indi-
viduals on an operating system installed on the computing
device, (4) determining, based on an analysis of an event
notification generated by the accessibility service, that a user
of the computing device is prompted, on the computing
device, to provide input necessary to complete the modifica-
tion of the application, and (5) in response to determining that
the user is prompted to provide the input, automatically sup-
plying the input in order to complete the modification of the
application. In some examples, prior to monitoring the event
notifications, the method may include prompting the user to
enable permissions on the computing device required by the
accessibility service.

In some embodiments, identifying the need to modify the
application may include identifying an administrator-defined
policy for the computing device that requires the installation
of the application onto the computing device. In other
examples, identifying the need to modify the application may
include determining that an update is available for the appli-
cation. Additionally or alternatively, identifying the need to
modify the application may include determining that the
application represents a security threat and should therefore
be uninstalled from the computing device.

In some examples, initiating modification of the applica-
tion may include initiating modification of the application in

10

15

20

25

30

35

40

45

50

55

60

65

2

response to an instruction from a user of the computing
device. Additionally or alternatively, initiating modification
of'the application may include automatically initiating modi-
fication of the application without user input.

In some embodiments, the event notifications generated by
the accessibility service may include an indication that a user
interface of the computing device has changed. Furthermore,
in some examples, the event notifications may include infor-
mation that indicates the content of the user interface that
changed.

In some embodiments, determining that the user is
prompted to provide input necessary to complete the modifi-
cation of the application may include analyzing a layout
and/or content of an active window displayed on the comput-
ing device. Additionally or alternatively, determining that the
user is prompted to provide the input may include determin-
ing that the user is prompted to click a button, determining
that the user is prompted to enter credentials that authenticate
the user, and/or determining that the user is prompted to
enable permissions on the computing device.

In some examples, automatically supplying the input in
order to complete the modification of the application may
include removing the user’s control of the computing device
and then displaying, on the active window of the computing
device, the progress of the modification of the application. In
these examples, displaying the progress of the modification
on the active window may include overlaying a screen indi-
cating the progress of the modification on a user interface that
prompts the user to complete the modification.

In one embodiment, a system for implementing the above-
described method may include (1) an identification module
that identifies a need to modify at least one application on a
computing device, (2) an initiating module that initiates
modification of the application on the computing device, (3)
a monitoring module that, while the application is being
modified, monitors event notifications generated by an acces-
sibility service that provides user interface enhancements for
disabled individuals on an operating system installed on the
computing device, (4) a determination module that deter-
mines, based on an analysis of an event notification generated
by the accessibility service, that a user of the computing
device is prompted, on the computing device, to provide input
necessary to complete the modification of the application, and
(5) a supplying module that, in response to determining that
the user is prompted to provide the input, automatically sup-
plies the input in order to complete the modification of the
application. In addition, the system may include at least one
processor that executes the identification module, the initiat-
ing module, the monitoring module, the determination mod-
ule, and the supplying module.

In some examples, the above-described method may be
encoded as computer-readable instructions on a non-transi-
tory computer-readable medium. For example, a computer-
readable medium may include one or more computer-execut-
able instructions that, when executed by at least one processor
of'a computing device, may cause the computing device to (1)
identify a need to modify at least one application on the
computing device, (2) initiate modification of the application
on the computing device, (3) while the application is being
modified, monitor event notifications generated by an acces-
sibility service that provides user interface enhancements for
disabled individuals on an operating system installed on the
computing device, (4) determine, based on an analysis of an
event notification generated by the accessibility service, that
auser of the computing device is prompted, on the computing
device, to provide input necessary to complete the modifica-
tion of the application, and (5) in response to determining that

US 9,323,518 Bl

3

the user is prompted to provide the input, automatically sup-
ply the input in order to complete the modification of the
application.

Features from any of the above-mentioned embodiments
may be used in combination with one another in accordance
with the general principles described herein. These and other
embodiments, features, and advantages will be more fully
understood upon reading the following detailed description in
conjunction with the accompanying drawings and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings illustrate a number of exem-
plary embodiments and are a part of the specification.
Together with the following description, these drawings dem-
onstrate and explain various principles of the instant disclo-
sure.

FIG. 1 is a block diagram of an exemplary system for
modifying applications without user input.

FIG. 2 is a block diagram of an additional exemplary sys-
tem for modifying applications without user input.

FIG. 3 is a flow diagram of an exemplary method for
modifying applications without user input.

FIG. 4 is an illustration of an exemplary user interface that
prompts a user to modify an application.

FIG. 5 is an illustration of an exemplary screen presented to
a user while an application is being modified.

FIG. 6 is a block diagram of an exemplary computing
system capable of implementing one or more of the embodi-
ments described and/or illustrated herein.

FIG. 7 is a block diagram of an exemplary computing
network capable of implementing one or more of the embodi-
ments described and/or illustrated herein.

Throughout the drawings, identical reference characters
and descriptions indicate similar, but not necessarily identi-
cal, elements. While the exemplary embodiments described
herein are susceptible to various modifications and alternative
forms, specific embodiments have been shown by way of
example in the drawings and will be described in detail
herein. However, the exemplary embodiments described
herein are not intended to be limited to the particular forms
disclosed. Rather, the instant disclosure covers all modifica-
tions, equivalents, and alternatives falling within the scope of
the appended claims.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

The present disclosure is generally directed to systems and
methods for modifying applications without user input. As
will be explained in greater detail below, by detecting and
analyzing event notifications generated by an accessibility
service, the disclosed systems and methods may determine
whether a user is required to provide input in order to com-
plete a desired application-modification operation, such as
installing, uninstalling, or updating an application on a com-
puting device. Once the required input is identified, the sys-
tems and methods described herein may supply the input
without requiring any user involvement. As such, the dis-
closed systems and methods may ensure that a computing
device successfully completes desired application modifica-
tions, such as those that are beneficial to the safety and per-
formance of the computing device, without user input or
intervention.

The following will provide, with reference to FIGS. 1-2
and 4-5, detailed descriptions of exemplary systems for modi-
fying applications without user input. Detailed descriptions

10

25

30

40

45

50

55

4

of corresponding computer-implemented methods will also
be provided in connection with FIG. 3. In addition, detailed
descriptions of an exemplary computing system and network
architecture capable of implementing one or more of the
embodiments described herein will be provided in connection
with FIGS. 6 and 7, respectively.

As illustrated in this figure, exemplary system 100 may
include one or more modules 102 for performing one or more
tasks. For example, and as will be explained in greater detail
below, exemplary system 100 may include an identification
module 104 that identifies a need to modify at least one
application on a computing device. Exemplary system 100
may also include an initiating module 106 that initiates modi-
fication of the application on the computing device.

In addition, and as will be described in greater detail below,
exemplary system 100 may include a monitoring module 108
that, while the application is being modified, monitors event
notifications generated by an accessibility service that pro-
vides user interface enhancements for disabled individuals on
an operating system installed on the computing device. Fur-
thermore, exemplary system 100 may include a determina-
tion module 110 that determines, based on an analysis of an
event notification generated by the accessibility service, that
auser of the computing device is prompted on the computing
device, to provide input necessary to complete the modifica-
tion of the application. Exemplary system 100 may also
include a supplying module 112 that, in response to deter-
mining that the user is prompted to provide the input, auto-
matically supplies the input in order to complete the modifi-
cation of the application. Finally, exemplary system 100 may
include a prompting module 114 that prompts the user to
enable permissions on the computing device required by the
accessibility service. Although illustrated as separate ele-
ments, one or more of modules 102 in FIG. 1 may represent
portions of a single module or application.

In certain embodiments, one or more of modules 102 in
FIG. 1 may represent one or more software applications or
programs that, when executed by a computing device, may
cause the computing device to perform one or more tasks. For
example, and as will be described in greater detail below, one
or more of modules 102 may represent software modules
stored and configured to run on one or more computing
devices, such as the devices illustrated in FIG. 2 (e.g., com-
puting device 202 and/or server 206), computing system 610
in FIG. 6, and/or portions of exemplary network architecture
700 in FIG. 7. One or more of modules 102 in FIG. 1 may also
represent all or portions of one or more special-purpose com-
puters configured to perform one or more tasks.

Exemplary system 100 in FIG. 1 may be implemented in a
variety of ways. For example, all or a portion of exemplary
system 100 may represent portions of exemplary system 200
in FIG. 2. As shown in FIG. 2, system 200 may include a
computing device 202 in communication with a server 206
via a network 204. In one example, computing device 202
may be programmed with one or more of modules 102 in
order to supply input necessary to complete the modification
of an application on computing device 202. Additionally or
alternatively, server 206 may be programmed with one or
more of modules 102 in order to analyze event notifications
generated by an accessibility service.

In one embodiment, one or more of modules 102 from FIG.
1 may, when executed by at least one processor of computing
device 202 and/or server 206, enable computing device 202
and/or server 206 to modify applications without user input.
For example, and as will be described in greater detail below,
identification module 104 may cause computing device 202
and/or server 206 to identify a need to modify at least one

US 9,323,518 Bl

5

application (e.g., application 208) on a computing device
(e.g., computing device 202). Next, initiating module 106
may cause computing device 202 and/or server 206 to initiate
modification of the application on the computing device. In
addition, while the application is being modified, monitoring
module 108 may cause computing device 202 and/or server
206 to monitor event notifications (e.g., event notifications
212) generated by an accessibility service (e.g., accessibility
service 210) that provides user interface enhancements for
disabled individuals on an operating system installed on the
computing device.

Furthermore, determination module 110 may cause com-
puting device 202 and/or server 206 to determine, based on an
analysis of an event notification generated by the accessibility
service, that a user of the computing device is prompted (e.g.,
via user prompt 214) to provide input necessary to complete
the modification of the application. Finally, in response to
determining that the user is prompted to provide the input,
supplying module 112 may cause computing device 202 and/
or server 206 to automatically supply the input in order to
complete the modification of the application.

Computing device 202 generally represents any type or
form of computing device capable of reading computer-ex-
ecutable instructions. Examples of computing device 202
include, without limitation, laptops, tablets, desktops, serv-
ers, cellular phones, Personal Digital Assistants (PDAs), mul-
timedia players, embedded systems, wearable devices (e.g.,
smart watches, smart glasses, etc.), gaming consoles, combi-
nations of one or more of the same, exemplary computing
system 610 in FIG. 6, or any other suitable computing device.

Server 206 generally represents any type or form of com-
puting device that is capable of analyzing event notifications
generated by an accessibility service. Examples of server 206
include, without limitation, application servers and database
servers configured to provide various database services and/
or run certain software applications.

Network 204 generally represents any medium or architec-
ture capable of facilitating communication or data transfer.
Examples of network 204 include, without limitation, an
intranet, a Wide Area Network (WAN), a Local Area Network
(LAN), a Personal Area Network (PAN), the Internet, Power
Line Communications (PLC), a cellular network (e.g., a Glo-
bal System for Mobile Communications (GSM) network),
exemplary network architecture 700 in FIG. 7, or the like.
Network 204 may facilitate communication or data transfer
using wireless or wired connections. In one embodiment,
network 204 may facilitate communication between comput-
ing device 202 and server 206.

FIG. 3 is a flow diagram of an exemplary computer-imple-
mented method 300 for modifying applications without user
input. The steps shown in FIG. 3 may be performed by any
suitable computer-executable code and/or computing system.
In some embodiments, the steps shown in FIG. 3 may be
performed by one or more of the components of system 100 in
FIG. 1, system 200 in FIG. 2, computing system 610 in FIG.
6, and/or portions of exemplary network architecture 700 in
FIG. 7.

As illustrated in FIG. 3, at step 302 one or more of the
systems described herein may identify a need to modify at
least one application on a computing device. For example,
identification module 104 may, as part of computing device
202 in FIG. 2, identity the need to modify application 208 on
computing device 202.

The term “application,” as used herein, generally refers to
any type or form of software, file, or executable code that may
be installed, run, deployed, or otherwise implemented on a
computing system. Examples of applications include, with-

5

10

15

20

25

30

35

40

45

55

60

65

6

out limitation, web browsers, operating systems, communi-
cation applications, word and number processing applica-
tions, gaming applications, security applications, cloud-
based applications, and media applications.

The systems described herein may identify the need to
modify the application in a variety of ways. In some
examples, identification module 104 may identify a need to
install application 208 onto computing device 202. For
example, identification module 104 may identify an admin-
istrator-defined policy for computing device 202 that requires
the installation of application 208 onto computing device
202. Specifically, computing device 202 may belong to an
employee within an organization and an IT administrator
within the organization may recommend or require that all
employees install application 208 onto their computing
devices. In another example, identification module 104 may
identify the need to install application 208 by identifying
(e.g., by browsing applications hosted on an application dis-
tribution platform) an application that may improve the secu-
rity and/or performance of computing device 202.

In additional examples, identification module 104 may
identify the need to modify application 208 by determining
that an update is available for application 208. For example,
application 208 may already be installed on computing device
202 and identification module 104 may receive a notification
that indicates an update is available, perform a web search for
available updates, or otherwise identify an available update
for application 208.

Furthermore, identification module 104 may identify the
need to modify application 208 by determining that applica-
tion 208 represents a security threat and should therefore be
uninstalled from computing device 202. For example, iden-
tification module 104 may scan and/or direct an external
anti-malware engine to scan applications installed on com-
puting device 202 for malware. In addition, identification
module 104 may compare the applications installed on com-
puting device 202 against a list of applications known to
contain malware. Identification module 104 may then deter-
mine, based on the results of the malware scan and/or addi-
tional analyses, that application 208 contains malicious files
and should therefore be uninstalled.

In some embodiments identification module 104 may iden-
tify the need to modify application 208 by identifying a noti-
fication, pop-up window, dialog box, or other alert presented
to the user that directs the user to perform the modification. In
other words, identification module 104 may infer the need to
modify application 208 based on determining that the user is
prompted to modify application 208 (e.g., in order to comply
with an administrator-defined security policy). However, in
other examples, identification module 104 may directly iden-
tify the need to modify application 208 by directly analyzing
application 208 (e.g., by searching for updates, scanning for
malware, etc.). In these examples, identification module 104
may alert the user about the need to modify application 208.

Additionally, identification module 104 may identify the
need to modify application 208 in part by determining the
importance of the modification. For example, identification
module 104 may determine whether the modification repre-
sents a significant improvement in the security and/or perfor-
mance of computing device 202 before directing one or more
of modules 102 to complete the modification. Specifically,
identification module 104 may determine that an administra-
tor requires the modification, that computing device 202 may
be vulnerable to malware without the modification, that com-
puting device 202 requires the modification in order to main-
tain proper functionality, and/or any additional determination
of importance.

US 9,323,518 Bl

7

Returning to FIG. 3, at step 304 one or more of the systems
described herein may initiate modification of the application
on the computing device. For example, initiating module 106
may, as part of computing device 202 in FIG. 2, initiate
modification of application 208 on computing device 202.

The systems described herein may initiate modification of
the application in a variety of ways. In some embodiments,
initiating module 106 may initiate modification of application
208 based on the type of modification identified by identifi-
cation module 104. For example, if the modification requires
application 208 to be installed or updated on computing
device 202, initiating module 106 may facilitate launching an
application distribution platform that hosts application 208
and/or updates for application 208. Specifically, initiating
module 106 may launch an application distribution platform
and perform a search for or otherwise access the page within
the application distribution platform that displays application
208.

The term “application distribution platform,” as used
herein, generally refers to any type or form of online service,
application, or software framework used to deliver media
content to users via a network. Application distribution plat-
forms may distribute a variety of media types, such as text,
audio, and video files, gaming applications, security applica-
tions, work-related applications, and/or any additional type of
media. In addition, application distribution platforms may be
used to deliver media to both mobile and non-mobile com-
puting devices. Examples of application distribution plat-
forms include, without limitation, GOOGLE PLAY, AMA-
ZON APPSTORE, WINDOWS STORE, and APP STORE
(for 10S).

In other embodiments, if the modification requires the
uninstallation of application 208, initiating module 106 may
launch an application manager installed on computing device
202 that facilitates uninstalling applications from computing
device. The term “application manager,” as used herein, gen-
erally refers to any type or form of software, application, or
executable code running on a computing device that provides
a user a platform for modifying (e.g., removing or uninstall-
ing) other applications from the computing device.

In some examples, initiating module 106 may initiate the
modification without user input. For example, initiating mod-
ule 106 may automatically launch an application distribution
platform or application manager used to perform the modifi-
cation. In this example, initiating module 106 may remove the
user’s control of computing device 202 while the application
distribution platform or application manager is launched to
help ensure that the modification is accomplished. In addi-
tion, initiating module 106 may provide a prompt to the user
that directs the user to launch the application distribution
platform or application manager.

In some embodiments, initiating module 106 may initiate
modification of application 208 in response to an instruction
from the user. For example, identification module 104, an
administrator, a security application installed on computing
device 202, or an additional entity or service may notify the
user of the need to modify application 208. Initiating module
106 may then determine that the user has initiated the modi-
fication by launching an application manager or application
distribution platform, providing input to a dialog box, or
initiated the modification in any additional manner.

Returning to FIG. 3, at step 306 one or more of the systems
described herein may, while the application is being modi-
fied, monitor event notifications generated by an accessibility
service that provides user interface enhancements for dis-
abled individuals on an operating system installed on the
computing device. For example, monitoring module 108

25

40

45

55

8

may, as part of computing device 202, monitor event notifi-
cations 212 generated by accessibility service 210 while
application 208 is being modified.

The term “accessibility service,” as used herein, generally
refers to any type or form of application running on a com-
puting device that monitors user interfaces presented to a user
of the computing device. In some examples, an accessibility
service may monitor user interfaces in order to notify the user
of the content of the user interfaces. For example, an acces-
sibility service may assist users with audio or visual impair-
ments (e.g., by reading text displayed on a screen, highlight-
ing or enlarging certain elements of a user interface,
providing input to user interfaces, etc.). Additionally or alter-
natively, an accessibility service may assist users who are
temporarily unable to fully interact with their computing
device.

In some embodiments, an accessibility service may moni-
tor user interfaces by detecting a state transition in a user
interface. For example, an accessibility service may detect
user interactions with a computing device, such as by detect-
ing that a user has clicked a button, changed the focus of a
screen (e.g., by zooming in), entered text into an input field,
etc. An accessibility service may also detect changes in user
interfaces produced by an application or operating system
running on a computing device, such as by determining that
an application is executing, identifying a prompt requesting
user input, detecting an audio notification, etc.

Specifically, in some examples, an accessibility service
may detect changes in user interfaces by receiving event
notifications. The term “event notification,” as used herein,
generally refers to any type or form of electronic message or
portion of code distributed to an accessibility service in
response to a state transition in one or more user interfaces. In
some examples, event notifications may be generated only
when an accessibility service and/or certain permissions are
enabled on a computing device. In addition, event notifica-
tions may contain a variety of information associated with a
user interface transition. For example, an event notification
may simply alert an accessibility service that a change has
occurred. In addition, an event notification may contain infor-
mation indicating what type of change occurred. As an
example, in an ANDROID operating system, an event notifi-
cation of the type “TYPE_TOUCH_INTERACTION_
START” may indicate that a user has begun to touch the
touchscreen of a computing device. In addition, an event
notification of the type “TYPE_WINDOW_STAT-
E_CHANGED” may indicate that a pop-up window, menu, or
dialog box has appeared on the screen of a computing device.
Furthermore, in addition to labelling the type of event that
occurred in a user interface, an event notification may include
information that describes the origin and/or content of the
event. For example, an accessibility service may request that
an event notification include the time that the event occurred,
information about the source of the event, as well as the layout
and content of the active window of the computing device at
the time the event occurred. The term “active window,” as
used herein, generally refers to any user interface, notifica-
tion, or audio-visual display that is currently presented to a
user on the screen of a computing device.

The systems described herein may monitor event notifica-
tions 212 generated by accessibility service 210 in a variety of
ways. In some examples, accessibility service 210 may gen-
erate event notifications 212 in response to each change in a
user interface of computing device 202. However, in some
examples, monitoring module 108 may trigger accessibility
service 210 to generate event notifications 212 only after
identifying the need to modify application 208. Monitoring

US 9,323,518 Bl

9

module 108 may then identify each of event notifications 212
while and/or after event notifications 212 are sent to accessi-
bility service 210.

Furthermore, in some examples, accessibility service 208
may require certain permissions in order to access and report
information associated with event notifications. As such,
before monitoring module 104 monitors event notifications
210, prompting module 114 may prompt (e.g., by displaying
a pop-up window or notification on the active window of
computing device 202) the user to enable permissions
required by accessibility service 208.

Returning to FIG. 3, at step 308 one or more of the systems
described herein may determine, based on an analysis of an
event notification generated by the accessibility service, that
auser of the computing device is prompted, on the computing
device, to provide input necessary to complete the modifica-
tion of the application. For example, determination module
110 may, as part of computing device 202 in FIG. 2, deter-
mine that the user of computing device 202 is prompted by
user prompt 214 to provide input necessary to complete the
modification of application 208 based on an analysis of one of
event notifications 212 generated by accessibility service
210.

The term “user prompt,” as used herein, generally refers to
any type or form of field, textbox, or clickable region within
a pop-up window, notification, dialog box, or user interface
through which a user may enter input. In some examples, the
input may direct the operating system and/or other applica-
tion on a computing device to perform a specific action (e.g.,
modifying an application on the computing device).

The systems described herein may determine that the user
is prompted to provide input necessary via the user prompt in
a variety of ways. In some examples, determination module
110 may determine the type of input required by user prompt
214. For example, determination module 110 may determine
that the user is prompted to click a button (e.g. labelled
“install,” “download,” “remove,” “uninstall,” “update,”
“allow,” etc.). In addition, determination module 110 may
determine that the user is prompted to enter credentials that
authenticate the user. For example, determination module
104 may determine that user prompt 214 requires a username
and/or password that authenticates the user as an “adminis-
trator” of computing device 202. Additionally or alterna-
tively, determination module 110 may determine that user
prompt 214 prompts the user to enable permissions on com-
puting device 202 that allow the installation, uninstallation, or
update of application 208.

Furthermore, determination module 110 may determine
the context and/or origin of user prompt 214. In some
examples, determination module 110 may determine that user
prompt 214 is created and displayed to the user by the oper-
ating system of computing device 202. For example, the
operating system of computing device 202 may require user
input before permitting certain changes on computing device
202, such as installing, uninstalling, or updating application
208. As such, the operating system may display user prompt
214 in response to initiating module 106 initiating modifica-
tion of application 208. In other examples, determination
module 110 may determine that user prompt 214 represents a
user prompt directly on an application distribution platform
or application manager that facilitates the modification of
application 208. For example, after the user and/or initiating
module 106 launches an application manager, determination
module 110 may identify user prompt 214 as a button on the
application distribution platform.

As an example, FIG. 4 illustrates user prompt 214 on an
application distribution platform 402. In this example, initi-

30

40

45

65

10

ating module 106 may have initiated the modification of
application 208 by displaying, on an active window 400, the
page of application distribution platform 402 that hosts appli-
cation 208 for download. As shown in FIG. 4, application
distribution platform 402 may display the name of applica-
tion 208 (in this example, “Malware Destroyer”), the pub-
lisher of application 208 (in this example, “Security Solu-
tions”), and the average rating of application 208. In addition,
application distribution platform 402 may display an “install”
button that enables the user to install application 208 onto
computing device 202. In this example, determination mod-
ule may identify the install button as user prompt 214.

In some examples, determination module 110 may identify
user prompt 214 by applying a variety of analyses to event
notifications 212 in order to identify the event notification that
indicates user prompt 214. In some examples, determination
module 110 may analyze information included within the
event notification that indicates the source of the event noti-
fication. For example, determination module 110 may deter-
mine that the event notification was generated in response to
the operating system of computing device 202 displaying a
notification to the user. In addition, determination module
110 may determine that the event notification was generated
in response to an application distribution platform or appli-
cation manager launching on computing device 202. Refer-
ring to the example of FIG. 4, determination module 110 may
determine that the event notification was generated in
response to launching application distribution platform 402.

Additionally or alternatively, determination module 108
may identify user prompt 214 by analyzing the active window
of computing device 202. Specifically, determination module
108 may analyze a layout and/or content of the active window.
For example, determination module 110 may search the
images and/or information about the images presented to the
user on the screen of computing device 202 for an indication
of a user input field. In this example, determination module
110 may receive information about the layout and content of
the active window from the event notification and/or by
directly analyzing an image of the active window.

In some examples, determination module 110 may analyze
the layout and content of the active window by applying a set
of rules to the active window based at least in part on charac-
teristics of computing device 202, the type of user prompt
presented to the user, and/or the application manager or appli-
cation distribution platform that facilitates the modification
of application 208. For example, in addition to analyzing
information included within the event notification, determi-
nation module 110 may apply a set of rules to the active
window based on the size of computing device 202, the type
of computing device 202, the operating system installed on
computing device 202, other applications installed on com-
puting device 202, personalized settings applied to comput-
ing device 202, and/or any additional characteristics that may
influence the placement or appearance of a user input field on
the active window of computing device 202.

Referring again to the example of FIG. 4, determination
module 110 may identify user prompt 214 on application
distribution platform 402 at least in part by identifying the
name and/or type of application distribution platform 402, as
well as the type of computing device 202. For example, deter-
mination module 110 may identify application distribution
platform 402 as GOOGLE PLAY (e.g., by analyzing the
event notification) and computing device 202 as a smartphone
running the ANDROID operating system. As such, determi-
nation module 110 may identify user prompt 214 on applica-
tion distribution platform 402 by determining that GOOGLE

US 9,323,518 Bl

11

PLAY running on an ANDROID smartphone generally dis-
plays user prompts on the upper right hand side of the active
window.

Returning to FIG. 3, at step 310 one or more of the systems
described herein may, in response to determining that the user
is prompted to provide the input, automatically supply the
input in order to complete the modification of the application.
For example, supplying module 112 may automatically sup-
ply the input in response to identifying user prompt 214.

The systems described herein may supply the input neces-
sary to complete the modification of the application in a
variety of ways. In some examples, supplying module 112
may supply the input via accessibility service 210. As previ-
ously mentioned, accessibility services may detect and ana-
lyze changes in user interfaces in order to perform actions on
a computing device that may assist users access features or
content on the computing device and/or perform actions that
users may be unable to perform themselves. Specifically, an
accessibility service may interact with user interfaces by per-
forming one or more accessibility actions. As such, supplying
module 112 may direct accessibility service 210 to provide
the identified input required to complete the modification of
application 208 via an accessibility action. Referring to the
example of FIG. 4, supplying module 112 may direct acces-
sibility service 210 to click the install button on application
distribution platform 402 in order to install application 208
onto computing device 202.

In other examples, supplying module 112 may provide the
required input independently from accessibility service 210.
For example, if user prompt 214 requires the user’s creden-
tials, supplying module 112 may access the credentials and
directly supply the credentials to user prompt 214. In general,
supplying module 112 may supply the required input in any
manner such that no user interaction is required and the user
may not interfere with completing the modification.

In some embodiments, supplying module 112 may ensure
that the user does not interfere with completing the modifi-
cation by removing the user’s control of computing device
202 while the modification is performed. For example, sup-
plying module 112 may prohibit the user from entering input
into computing device 202 and/or opening or closing any
applications on computing device 202. Supplying module
112 may remove the user’s control by overriding instructions
issued by the user, disabling permissions that allow the userto
issue instructions, and/or removing the user’s control in any
additional manner.

Furthermore, in some examples, supplying module 112
may display the progress of the modification on the active
window of computing device 202 while the modification is
performed and while the user is suspended from controlling
computing device 202. For example, supplying module 112
may display the progress of the modification on the active
window by overlaying a screen on user prompt 214 that
indicates the progress of the modification. The screen may
present the progress of the modification in a variety of ways.
In some examples, the screen may simply indicate whether
the modification is still in progress or whether the modifica-
tion has been completed. In other examples, the screen may
display a progress bar that dynamically indicates the percent-
age of the modification that has been completed and/or the
estimated time required to complete the modification. The
screen may also display a variety of additional information
about the modification, such as the actions being performed in
the modification and/or the purpose of the modification. Once
the modification is complete, supplying module 112 may
remove the screen overlaid on the active window and return
control of computing device 202 to the user.

10

15

20

25

30

35

40

45

50

55

60

65

12

As an example, FIG. 5 illustrates an exemplary screen
overlay 502 on an active window 500. As shown in FIG. 6,
screen overlay 502 may notify the user that application 208 is
being installed onto computing device 202. In addition,
screen overlay 502 may display a progress bar that indicates
the percentage (in this example, “75%) of the installation
that has been completed.

The systems and methods described herein may be imple-
mented in a variety of ways and provide a number of advan-
tages. As was explained above, by detecting and analyzing
event notifications generated by an accessibility service, the
disclosed systems and methods may determine that a user is
required to provide input in order to complete a desired appli-
cation-modification operation, such as installing, uninstall-
ing, or updating an application on a computing device. Once
the required input is identified, the systems and methods
described herein may supply the required input without
requiring any user involvement. As such, the disclosed sys-
tems and methods may ensure that a computing device suc-
cessfully completes desired modifications, such as those that
are beneficial to the safety and performance of the computing
device, without user involvement or intervention.

FIG. 6 is a block diagram of an exemplary computing
system 610 capable of implementing one or more of the
embodiments described and/or illustrated herein. For
example, all or a portion of computing system 610 may per-
form and/or be a means for performing, either alone or in
combination with other elements, one or more of the steps
described herein (such as one or more of the steps illustrated
in FIG. 3). All or a portion of computing system 610 may also
perform and/or be a means for performing any other steps,
methods, or processes described and/or illustrated herein.

Computing system 610 broadly represents any single or
multi-processor computing device or system capable of
executing computer-readable instructions. Examples of com-
puting system 610 include, without limitation, workstations,
laptops, client-side terminals, servers, distributed computing
systems, handheld devices, or any other computing system or
device. In its most basic configuration, computing system 610
may include at least one processor 614 and a system memory
616.

Processor 614 generally represents any type or form of
physical processing unit (e.g., a hardware-implemented cen-
tral processing unit) capable of processing data or interpret-
ing and executing instructions. In certain embodiments, pro-
cessor 614 may receive instructions from a software
application or module. These instructions may cause proces-
sor 614 to perform the functions of one or more of the exem-
plary embodiments described and/or illustrated herein.

System memory 616 generally represents any type or form
of volatile or non-volatile storage device or medium capable
of storing data and/or other computer-readable instructions.
Examples of system memory 616 include, without limitation,
Random Access Memory (RAM), Read Only Memory
(ROM), flash memory, or any other suitable memory device.
Although not required, in certain embodiments computing
system 610 may include both a volatile memory unit (such as,
for example, system memory 616) and a non-volatile storage
device (such as, for example, primary storage device 632, as
described in detail below). In one example, one or more of
modules 102 from FIG. 1 may be loaded into system memory
616.

In certain embodiments, exemplary computing system 610
may also include one or more components or elements in
addition to processor 614 and system memory 616. For
example, as illustrated in FIG. 6, computing system 610 may
include a memory controller 618, an Input/Output (I/O) con-

US 9,323,518 Bl

13

troller 620, and a communication interface 622, each of which
may be interconnected via a communication infrastructure
612. Communication infrastructure 612 generally represents
any type or form of infrastructure capable of facilitating com-
munication between one or more components of a computing
device. Examples of communication infrastructure 612
include, without limitation, a communication bus (such as an
Industry Standard Architecture (ISA), Peripheral Component
Interconnect (PCI), PCI Express (PCle), or similar bus) and a
network.

Memory controller 618 generally represents any type or
form of device capable of handling memory or data or con-
trolling communication between one or more components of
computing system 610. For example, in certain embodiments
memory controller 618 may control communication between
processor 614, system memory 616, and 1/O controller 620
via communication infrastructure 612.

1/O controller 620 generally represents any type or form of
module capable of coordinating and/or controlling the input
and output functions of a computing device. For example, in
certain embodiments I/O controller 620 may control or facili-
tate transfer of data between one or more elements of com-
puting system 610, such as processor 614, system memory
616, communication interface 622, display adapter 626, input
interface 630, and storage interface 634.

Communication interface 622 broadly represents any type
or form of communication device or adapter capable of facili-
tating communication between exemplary computing system
610 and one or more additional devices. For example, in
certain embodiments communication interface 622 may
facilitate communication between computing system 610 and
a private or public network including additional computing
systems. Examples of communication interface 622 include,
without limitation, a wired network interface (such as a net-
work interface card), a wireless network interface (such as a
wireless network interface card), a modem, and any other
suitable interface. In at least one embodiment, communica-
tion interface 622 may provide a direct connection to aremote
server via a direct link to a network, such as the Internet.
Communication interface 622 may also indirectly provide
such a connection through, for example, a local area network
(such as an Ethernet network), a personal area network, a
telephone or cable network, a cellular telephone connection,
a satellite data connection, or any other suitable connection.

In certain embodiments, communication interface 622
may also represent a host adapter configured to facilitate
communication between computing system 610 and one or
more additional network or storage devices via an external
bus or communications channel. Examples of host adapters
include, without limitation, Small Computer System Inter-
face (SCSI) host adapters, Universal Serial Bus (USB) host
adapters, Institute of Electrical and Electronics Engineers
(IEEE) 1394 host adapters, Advanced Technology Attach-
ment (ATA), Parallel ATA (PATA), Serial ATA (SATA), and
External SATA (eSATA) host adapters, Fibre Channel inter-
face adapters, Ethernet adapters, or the like. Communication
interface 622 may also allow computing system 610 to
engage in distributed or remote computing. For example,
communication interface 622 may receive instructions from a
remote device or send instructions to a remote device for
execution.

As illustrated in FIG. 6, computing system 610 may also
include at least one display device 624 coupled to communi-
cation infrastructure 612 via a display adapter 626. Display
device 624 generally represents any type or form of device
capable of visually displaying information forwarded by dis-
play adapter 626. Similarly, display adapter 626 generally

10

15

20

25

30

35

40

45

50

55

60

65

14

represents any type or form of device configured to forward
graphics, text, and other data from communication infrastruc-
ture 612 (or from a frame buffer, as known in the art) for
display on display device 624.

As illustrated in FIG. 6, exemplary computing system 610
may also include at least one input device 628 coupled to
communication infrastructure 612 via an input interface 630.
Input device 628 generally represents any type or form of
input device capable of providing input, either computer or
human generated, to exemplary computing system 610.
Examples of input device 628 include, without limitation, a
keyboard, a pointing device, a speech recognition device, or
any other input device.

As illustrated in FIG. 6, exemplary computing system 610
may also include a primary storage device 632 and a backup
storage device 633 coupled to communication infrastructure
612 via a storage interface 634. Storage devices 632 and 633
generally represent any type or form of storage device or
medium capable of storing data and/or other computer-read-
able instructions. For example, storage devices 632 and 633
may be a magnetic disk drive (e.g., a so-called hard drive), a
solid state drive, a floppy disk drive, a magnetic tape drive, an
optical disk drive, a flash drive, or the like. Storage interface
634 generally represents any type or form of interface or
device for transferring data between storage devices 632 and
633 and other components of computing system 610.

In certain embodiments, storage devices 632 and 633 may
be configured to read from and/or write to a removable stor-
age unit configured to store computer software, data, or other
computer-readable information. Examples of suitable remov-
able storage units include, without limitation, a floppy disk, a
magnetic tape, an optical disk, a flash memory device, or the
like. Storage devices 632 and 633 may also include other
similar structures or devices for allowing computer software,
data, or other computer-readable instructions to be loaded
into computing system 610. For example, storage devices 632
and 633 may be configured to read and write software, data, or
other computer-readable information. Storage devices 632
and 633 may also be a part of computing system 610 or may
be a separate device accessed through other interface sys-
tems.

Many other devices or subsystems may be connected to
computing system 610. Conversely, all of the components
and devices illustrated in FIG. 6 need not be present to prac-
tice the embodiments described and/or illustrated herein. The
devices and subsystems referenced above may also be inter-
connected in different ways from that shown in FIG. 6. Com-
puting system 610 may also employ any number of software,
firmware, and/or hardware configurations. For example, one
or more of the exemplary embodiments disclosed herein may
be encoded as a computer program (also referred to as com-
puter software, software applications, computer-readable
instructions, or computer control logic) on a computer-read-
able medium. The term “computer-readable medium,” as
used herein, generally refers to any form of device, carrier, or
medium capable of storing or carrying computer-readable
instructions. Examples of computer-readable media include,
without limitation, transmission-type media, such as carrier
waves, and non-transitory-type media, such as magnetic-stor-
age media (e.g., hard disk drives, tape drives, and floppy
disks), optical-storage media (e.g., Compact Disks (CDs),
Digital Video Disks (DVDs), and BLU-RAY disks), elec-
tronic-storage media (e.g., solid-state drives and flash media),
and other distribution systems.

The computer-readable medium containing the computer
program may be loaded into computing system 610. All or a
portion of the computer program stored on the computer-

US 9,323,518 Bl

15

readable medium may then be stored in system memory 616
and/or various portions of storage devices 632 and 633. When
executed by processor 614, a computer program loaded into
computing system 610 may cause processor 614 to perform
and/or be a means for performing the functions of one or more
of the exemplary embodiments described and/or illustrated
herein. Additionally or alternatively, one or more of the exem-
plary embodiments described and/or illustrated herein may
be implemented in firmware and/or hardware. For example,
computing system 610 may be configured as an Application
Specific Integrated Circuit (ASIC) adapted to implement one
or more of the exemplary embodiments disclosed herein.

FIG. 7 is a block diagram of an exemplary network archi-
tecture 700 in which client systems 710, 720, and 730 and
servers 740 and 745 may be coupled to a network 750. As
detailed above, all or a portion of network architecture 700
may perform and/or be a means for performing, either alone
or in combination with other elements, one or more of the
steps disclosed herein (such as one or more of the steps
illustrated in FIG. 3). All or a portion of network architecture
700 may also be used to perform and/or be a means for
performing other steps and features set forth in the instant
disclosure.

Client systems 710, 720, and 730 generally represent any
type or form of computing device or system, such as exem-
plary computing system 610 in FIG. 6. Similarly, servers 740
and 745 generally represent computing devices or systems,
such as application servers or database servers, configured to
provide various database services and/or run certain software
applications. Network 750 generally represents any telecom-
munication or computer network including, for example, an
intranet, a WAN, a LAN, a PAN, or the Internet. In one
example, client systems 710, 720, and/or 730 and/or servers
740 and/or 745 may include all or a portion of system 100
from FIG. 1.

As illustrated in FIG. 7, one or more storage devices 760
(1)-(N) may be directly attached to server 740. Similarly, one
or more storage devices 770(1)-(N) may be directly attached
to server 745. Storage devices 760(1)-(N) and storage devices
770(1)-(N) generally represent any type or form of storage
device or medium capable of storing data and/or other com-
puter-readable instructions. In certain embodiments, storage
devices 760(1)-(N) and storage devices 770(1)-(N) may rep-
resent Network-Attached Storage (NAS) devices configured
to communicate with servers 740 and 745 using various pro-
tocols, such as Network File System (NFS), Server Message
Block (SMB), or Common Internet File System (CIFS).

Servers 740 and 745 may also be connected to a Storage
Area Network (SAN) fabric 780. SAN fabric 780 generally
represents any type or form of computer network or architec-
ture capable of facilitating communication between a plural-
ity of storage devices. SAN fabric 780 may facilitate commu-
nication between servers 740 and 745 and a plurality of
storage devices 790(1)-(N) and/or an intelligent storage array
795. SAN fabric 780 may also facilitate, via network 750 and
servers 740 and 745, communication between client systems
710, 720, and 730 and storage devices 790(1)-(N) and/or
intelligent storage array 795 in such a manner that devices
790(1)-(N) and array 795 appear as locally attached devices
to client systems 710, 720, and 730. As with storage devices
760(1)-(N) and storage devices 770(1)-(N), storage devices
790(1)-(N) and intelligent storage array 795 generally repre-
sent any type or form of storage device or medium capable of
storing data and/or other computer-readable instructions.

In certain embodiments, and with reference to exemplary
computing system 610 of FIG. 6, a communication interface,
such as communication interface 622 in FIG. 6, may be used

25

35

40

45

55

16

to provide connectivity between each client system 710, 720,
and 730 and network 750. Client systems 710, 720, and 730
may be able to access information on server 740 or 745 using,
for example, a web browser or other client software. Such
software may allow client systems 710, 720, and 730 to
access data hosted by server 740, server 745, storage devices
760(1)-(N), storage devices 770(1)-(N), storage devices 790
(1)-(N), or intelligent storage array 795. Although FIG. 7
depicts the use of a network (such as the Internet) for
exchanging data, the embodiments described and/or illus-
trated herein are not limited to the Internet or any particular
network-based environment.

In at least one embodiment, all or a portion of one or more
of the exemplary embodiments disclosed herein may be
encoded as a computer program and loaded onto and executed
by server 740, server 745, storage devices 760(1)-(N), storage
devices 770(1)-(N), storage devices 790(1)-(N), intelligent
storage array 795, or any combination thereof. All or a portion
of one or more of the exemplary embodiments disclosed
herein may also be encoded as a computer program, stored in
server 740, run by server 745, and distributed to client sys-
tems 710, 720, and 730 over network 750.

As detailed above, computing system 610 and/or one or
more components of network architecture 700 may perform
and/or be a means for performing, either alone or in combi-
nation with other elements, one or more steps of an exemplary
method for modifying applications without user input.

While the foregoing disclosure sets forth various embodi-
ments using specific block diagrams, flowcharts, and
examples, each block diagram component, flowchart step,
operation, and/or component described and/or illustrated
herein may be implemented, individually and/or collectively,
using a wide range of hardware, software, or firmware (or any
combination thereof) configurations. In addition, any disclo-
sure of components contained within other components
should be considered exemplary in nature since many other
architectures can be implemented to achieve the same func-
tionality.

Insome examples, all or a portion of exemplary system 100
in FIG. 1 may represent portions of a cloud-computing or
network-based environment. Cloud-computing environ-
ments may provide various services and applications via the
Internet. These cloud-based services (e.g., software as a ser-
vice, platform as a service, infrastructure as a service, etc.)
may be accessible through a web browser or other remote
interface. Various functions described herein may be pro-
vided through a remote desktop environment or any other
cloud-based computing environment.

In various embodiments, all or a portion of exemplary
system 100 in FIG. 1 may facilitate multi-tenancy within a
cloud-based computing environment. In other words, the
software modules described herein may configure a comput-
ing system (e.g., a server) to facilitate multi-tenancy for one
or more of the functions described herein. For example, one
or more of the software modules described herein may pro-
gram a server to enable two or more clients (e.g., customers)
to share an application that is running on the server. A server
programmed in this manner may share an application, oper-
ating system, processing system, and/or storage system
among multiple customers (i.e., tenants). One or more of the
modules described herein may also partition data and/or con-
figuration information of a multi-tenant application for each
customer such that one customer cannot access data and/or
configuration information of another customer.

According to various embodiments, all or a portion of
exemplary system 100 in FIG. 1 may be implemented within
a virtual environment. For example, the modules and/or data

US 9,323,518 Bl

17

described herein may reside and/or execute within a virtual
machine. As used herein, the term “virtual machine” gener-
ally refers to any operating system environment that is
abstracted from computing hardware by a virtual machine
manager (e.g., a hypervisor). Additionally or alternatively,
the modules and/or data described herein may reside and/or
execute within a virtualization layer. As used herein, the term
“virtualization layer” generally refers to any data layer and/or
application layer that overlays and/or is abstracted from an
operating system environment. A virtualization layer may be
managed by a software virtualization solution (e.g., a file
system filter) that presents the virtualization layer as though it
were part of an underlying base operating system. For
example, a software virtualization solution may redirect calls
that are initially directed to locations within a base file system
and/or registry to locations within a virtualization layer.

In some examples, all or a portion of exemplary system 100
in FIG. 1 may represent portions of a mobile computing
environment. Mobile computing environments may be
implemented by a wide range of mobile computing devices,
including mobile phones, tablet computers, e-book readers,
personal digital assistants, wearable computing devices (e.g.,
computing devices with a head-mounted display, smart-
watches, etc.), and the like. In some examples, mobile com-
puting environments may have one or more distinct features,
including, for example, reliance on battery power, presenting
only one foreground application at any given time, remote
management features, touchscreen features, location and
movement data (e.g., provided by Global Positioning Sys-
tems, gyroscopes, accelerometers, etc.), restricted platforms
that restrict modifications to system-level configurations and/
or that limit the ability of third-party software to inspect the
behavior of other applications, controls to restrict the instal-
lation of applications (e.g., to only originate from approved
application stores), etc. Various functions described herein
may be provided for a mobile computing environment and/or
may interact with a mobile computing environment.

In addition, all or a portion of exemplary system 100 in
FIG. 1 may represent portions of, interact with, consume data
produced by, and/or produce data consumed by one or more
systems for information management. As used herein, the
term “information management” may refer to the protection,
organization, and/or storage of data. Examples of systems for
information management may include, without limitation,
storage systems, backup systems, archival systems, replica-
tion systems, high availability systems, data search systems,
virtualization systems, and the like.

In some embodiments, all or a portion of exemplary system
100 in FIG. 1 may represent portions of, produce data pro-
tected by, and/or communicate with one or more systems for
information security. As used herein, the term “information
security” may refer to the control of access to protected data.
Examples of systems for information security may include,
without limitation, systems providing managed security ser-
vices, data loss prevention systems, identity authentication
systems, access control systems, encryption systems, policy
compliance systems, intrusion detection and prevention sys-
tems, electronic discovery systems, and the like.

According to some examples, all or a portion of exemplary
system 100 in FIG. 1 may represent portions of, communicate
with, and/or receive protection from one or more systems for
endpoint security. As used herein, the term “endpoint secu-
rity” may refer to the protection of endpoint systems from
unauthorized and/or illegitimate use, access, and/or control.
Examples of systems for endpoint protection may include,

10

15

20

25

30

35

40

45

50

55

60

65

18

without limitation, anti-malware systems, user authentication
systems, encryption systems, privacy systems, spam-filtering
services, and the like.

The process parameters and sequence of steps described
and/or illustrated herein are given by way of example only
and can be varied as desired. For example, while the steps
illustrated and/or described herein may be shown or discussed
in a particular order, these steps do not necessarily need to be
performed in the order illustrated or discussed. The various
exemplary methods described and/or illustrated herein may
also omit one or more of the steps described or illustrated
herein or include additional steps in addition to those dis-
closed.

While various embodiments have been described and/or
illustrated herein in the context of fully functional computing
systems, one or more of these exemplary embodiments may
be distributed as a program product in a variety of forms,
regardless of the particular type of computer-readable media
used to actually carry out the distribution. The embodiments
disclosed herein may also be implemented using software
modules that perform certain tasks. These software modules
may include script, batch, or other executable files that may
be stored on a computer-readable storage medium or in a
computing system. In some embodiments, these software
modules may configure a computing system to perform one
or more of the exemplary embodiments disclosed herein.

In addition, one or more of the modules described herein
may transform data, physical devices, and/or representations
of physical devices from one form to another. For example,
one or more of the modules recited herein may receive or
identify an application to be modified on a computing device,
transform the application on the computing device, output a
result of the transformation to a user of the computing device,
and use the transformation to enhance the computing device.
Additionally or alternatively, one or more of the modules
recited herein may transform a processor, volatile memory,
non-volatile memory, and/or any other portion of a physical
computing device from one form to another by executing on
the computing device, storing data on the computing device,
and/or otherwise interacting with the computing device.

The preceding description has been provided to enable
others skilled in the art to best utilize various aspects of the
exemplary embodiments disclosed herein. This exemplary
description is not intended to be exhaustive or to be limited to
any precise form disclosed. Many modifications and varia-
tions are possible without departing from the spirit and scope
of the instant disclosure. The embodiments disclosed herein
should be considered in all respects illustrative and not
restrictive. Reference should be made to the appended claims
and their equivalents in determining the scope of the instant
disclosure.

Unless otherwise noted, the terms “connected to” and
“coupled to” (and their derivatives), as used in the specifica-
tion and claims, are to be construed as permitting both direct
and indirect (i.e., via other elements or components) connec-
tion. In addition, the terms “a” or “an,” as used in the speci-
fication and claims, are to be construed as meaning “at least
one of.” Finally, for ease of use, the terms “including” and
“having” (and their derivatives), as used in the specification
and claims, are interchangeable with and have the same
meaning as the word “comprising.”

What is claimed is:

1. A computer-implemented method for modifying appli-
cations without user input, at least a portion of the method
being performed by a computing device comprising at least
one processor, the method comprising:

US 9,323,518 Bl

19

prompting a user of the computing device to enable per-
missions on the computing device required by an acces-
sibility service that provides user interface enhance-
ments for disabled individuals on an operating system
installed on the computing device;

after the permissions are enabled, identifying a need to

modify at least one application on the computing device
based on an administrator-defined policy associated
with the application;

in response to identifying the need to modify the applica-

tion based on the administrator-defined policy, remov-
ing the user’s control of the computing device to prevent
the user from interfering with the modification;

after removing the user’s control of the computing device:

initiating modification of the application on the comput-
ing device;

while the application is being modified, monitoring
event notifications generated by the accessibility ser-
vice;

determining, based on an analysis of an event notifica-
tion generated by the accessibility service, that the
user of the computing device is prompted, on the
computing device, to enable permissions necessary to
modify the application;

in response to determining that the user is prompted to
enable the permissions, automatically enabling the
permissions via the accessibility service in order to
complete the modification of the application.

2. The method of claim 1, wherein the administrator-de-
fined policy requires at least one of:

the application to be installed onto the computing device:

the application to receive an available update;

the application to be uninstalled from the computing device

based on the application representing a security threat.

3. The method of claim 1, wherein initiating modification
of the application comprises at least one of:

launching an application distribution platform installed on

the computing device that facilitates installing and/or
updating applications;

launching an application manager installed on the comput-

ing device that facilitates uninstalling applications.

4. The method of claim 1, wherein removing the user’s
control of the computing device comprises at least one of:

prohibiting the user from entering input into the computing

device;

overriding instructions issued by the user.

5. The method of claim 1, wherein the event notifications
generated by the accessibility service include at least one of:

an indication that a user interface of the computing device

has changed;

information that indicates content of the user interface.

6. The method of claim 1, wherein determining that the
user is prompted to enable the permissions necessary to
modify the application comprises analyzing at least one of:

a layout of an active window displayed on the computing

device;

content of the active window.

7. The method of claim 1, wherein determining that the
user is prompted to enable the permissions necessary to
modify the application comprises at least one of:

determining the user is prompted to click a button;

determining the user is prompted to enter credentials that
authenticate the user.

8. The method of claim 1, wherein automatically supplying
the input in order to complete the modification of the appli-

10

15

20

25

30

35

40

45

50

55

60

65

20

cation comprises displaying, on an active window of the
computing device, the progress of the modification of the
application.

9. The method of claim 8, wherein displaying the progress
of'the modification on the active window comprises overlay-
ing a screen indicating the progress of the modification on a
user interface that prompts the user to complete the modifi-
cation.

10. A system for modifying applications without user
input, the system comprising:

aprompting module, stored in memory, that prompts a user
of a computing device to enable permissions on the
computing device required by an accessibility service
that provides user interface enhancements for disabled
individuals on an operating system installed on the com-
puting device;

an identification module, stored in memory, that identifies,
after the permissions are enabled, a need to modify at
least one application on the computing device based on
an administrator-defined policy associated with the
application;

an initiating module, stored in memory, that:
removes the user’s control of the computing device to

prevent the user from interfering with the modifica-
tion;

initiates modification of the application on the comput-
ing device after removing the user’s control of the
computing device;

a monitoring module, stored in memory, that while the
application is being modified, monitors event notifi-
cations generated by the accessibility service;

a determination module, stored in memory, that deter-
mines, based on an analysis of an event notification
generated by the accessibility service, that the user of
the computing device is prompted, on the computing
device, to enable permissions necessary to modify the
application;

a supplying module, stored in memory, that in response to
determining that the user is prompted to enable the per-
missions, automatically enables the permissions via the
accessibility service in order to complete the modifica-
tion of the application;

at least one processor that executes the prompting module,
the identification module, the initiating module, the
monitoring module, the determination module, and the
supplying module.

11. The system of claim 10, wherein the administrator-

defined policy requires at least one of:

the application to be installed onto the computing device:

the application to receive an available update;

the application to be uninstalled from the computing device
based on the application representing a security threat.

12. The system of claim 10, wherein the initiating module
initiates modification of the application by at least one of:

launching an application distribution platform installed on
the computing device that facilitates installing and/or
updating applications;

launching an application manager installed on the comput-
ing device that facilitates uninstalling applications.

13. The system of claim 10, wherein the initiating module
removes the user’s control of the computing device by at least
one of:

prohibiting the user from entering input into the computing
device;

overriding instructions issued by the user.

14. The system of claim 10, wherein the event notifications
generated by the accessibility service include at least one of:

US 9,323,518 Bl

21

an indication that a user interface of the computing device

has changed;

information that indicates content of the user interface.

15. The system of claim 10, wherein the determination
module determines that the user is prompted to enable the
permissions necessary to modify the application by analyzing
at least one of:

a layout of an active window displayed on the computing

device;

content of the active window.

16. The system of claim 10, wherein the determination
module determines that the user is prompted to enable the
permissions necessary to modify the application by at least
one of:

determining the user is prompted to click a button;

determining the user is prompted to enter credentials that

authenticate the user.

17. The system of claim 10, wherein the supplying module
automatically supplies the input in order to complete the
modification of the application by displaying, on an active
window of the computing device, the progress of the modifi-
cation of the application.

18. A non-transitory computer-readable medium compris-
ing one or more computer-executable instructions that, when
executed by at least one processor of a computing device,
cause the computing device to:

10

15

20

25

22

prompt a user of the computing device to enable permis-
sions on the computing device required by an accessi-
bility service that provides user interface enhancements
for disabled individuals on an operating system installed
on the computing device; after the permissions are
enabled, identify a need to modify at least one applica-
tion on the computing device based on an administrator-
defined policy associated with the application;
in response to identifying the need to modify the applica-
tion based on the administrator-defined policy, remove
the user’s control of the computing device to prevent the
user from interfering with the modification;
after removing the user’s control of the computing device:
initiate modification of the application on the computing
device;
while the application is being modified, monitor event
notifications generated by the accessibility service;
determine, based on an analysis of an event notification
generated by the accessibility service, that the user of
the computing device is prompted, on the computing
device, to enable permissions necessary to modify the
application;
in response to determining that the user is prompted to
enable the permissions, automatically enabling the
permissions via the accessibility service in order to
complete the modification of the application.

#* #* #* #* #*

